The nuclear energy that is currently produced in nuclear power plants to produce electricity is based on nuclear fission, finally, science has achieved "a breakthrough" in the relentless quest to make the most of nuclear fusion. For the first time, researchers have created a nuclear fusion reaction that has produced more energy than was invested.
Electricity from nuclear fusion
The experiment, carried out over the last 2 weeks at the Lawrence Livermore National Laboratory in California (USA), has managed to generate 2.5 megajoules of energy, 120% more than the 2.1 megajoules used to create it, according to the data. preliminaries.
"Scientifically, this is the first time this has been shown to be possible," Gianluca Sarri, a physicist at Queen's University Belfast, UK, told New Scientist. "In theory, we knew it should happen, but it could never be seen in real life experimentally."
The US Department of Energy has announced that scientists at a laboratory in California have succeeded for the first time in generating more electricity from a fusion reactor than they need to power it. The historic breakthrough raises the possibility that one day, perhaps decades from now, the global economy will run on carbon-free electricity generated by the same process that powers the sun and stars.
Produce 2.5 megajoules
Although the details are not yet public, newspapers such as the Financial Times claim that the lab has managed to produce 2.5 megajoules having used only 2.1 in the process. Thanks to this difference, the most important challenge of nuclear fusion would be overcome, having a net benefit. If confirmed, it would be clear that energy can only be obtained through hydrogen as a base, a practically inexhaustible component.
The Secretary of Energy of the United States, Jennifer Granholm commented during the announcement that it is "one of the most important scientific feats of the 21st century." In this sense, she has implied that she now has to focus on how to "simplify the process to be able to repeat at scale" the production of energy through hydrogen. By the time this milestone is achieved, fusion power will be a reality outside of the lab and will forever change the global energy market.
Breakthrough in nuclear fusion
Researchers in California confirmed a breakthrough in nuclear fusion, where they recorded the first case of ignition on August 8, 2021.
On August 8, 2021, 192 laser beams pumped far more energy than the entire US electrical grid into a tiny golden capsule and ignited, for a split second, the same thermonuclear fire that powers the Sun.
The experiment in fusion energy, conducted by the National Ignition Facility at Lawrence Livermore National Laboratory in California, is explored in detail in three new papers, one published in Physical Review Letters and two papers published in Physical Review E, which argue that the researchers achieved “ignition,” a crucial step showing that controlled nuclear fusion is feasible. But definitions of what constitutes “ignition” vary, and regardless of how it is defined, the 2021 results are still a long way from a reactor practical fusion, despite producing a large amount of energy.
Nuclear fusion involves the fusion of two elements, typically isotopes of hydrogen, into helium, a heavier element. It releases huge amounts of energy in the process, which is the process that powers stars like the Sun.
Nuclear fusion reactions are also self-sustaining, as once the atoms collide and achieve 'ignition', they produce enough energy to keep the temperature high without external input. At its core, the Sun fuses 620 million metric tons of hydrogen and produces 616 million metric tons of helium every second.
Fusion began in cold hydrogen fuel
The team at the National Ignition Facility and the authors of one of the three new papers, the one published in the journal Physical Review Letters, argue that "ignition is a state in which the fusion plasma can begin to 'burn propagation' into the surrounding cold fuel, allowing for the possibility of high energy gain.” That is, fusion began in cold hydrogen fuel, and the reaction expanded to generate much more energy than in previous experiments.
The August 8, 2021 experiment required 1.9 megajoules of energy in the form of ultraviolet lasers to instigate a fusion reaction in a small frozen pellet of hydrogen isotopes, an inertial confinement fusion reaction design, and released 1, 3 megajoules of energy, or about 70% of the energy put into the experiment. The output, in other words, was more than a quadrillion watts of power, even if released for just a tiny fraction of a second.
“The record firing was a major scientific breakthrough in fusion research, establishing that laboratory ignition of fusion is possible at the NIF,” Omar Hurricane, chief scientist for the inertial confinement fusion program, said in a statement. of the Lawrence Livermore National Laboratory. "Achieving the conditions necessary for ignition has been a long-standing goal for all inertial confinement fusion research and opens access to a new experimental regime in which alpha particle self-heating outperforms all cooling mechanisms in the fusion plasma.
"Ignition occurs when heating from the absorption of α particles
How Nuclear Fusion Reactors Work
Nuclear fusion is a general term that covers any reaction in which the nuclei of two different atoms literally fuse together. It's that easy. That's the opposite of nuclear fission, where one nucleus splits into two. Nuclear fusion generally takes place on lighter elements that have lower atomic numbers (the number of protons in the nucleus), while nuclear fission takes place on heavier elements with much higher atomic numbers.
In both fission and fusion, it is important to choose the right elements. In fusion, that's because elements of a certain atomic size can still fuse together, but they won't produce the abundant energy we associate with the promises of the nuclear fusion industry.
In fact, most fusion projects focus on the absolute lightest elements: hydrogen and helium. ITER, the huge proof-of-concept nuclear fusion reactor to be built over the next ten years in the south of France, uses the hydrogen isotopes deuterium and tritium. The names mean exactly what you may be thinking: deuterium has an atomic mass of two, while tritium is three.
Combination of plasma physics
TAE uses "a proprietary combination of plasma physics and accelerator physics in a linear fashion," CEO Binderbauer tells Popular Mechanics by email. And the footprint size is dramatically different. “Our current fifth-generation device, Norman, is 24 meters long with a vacuum vessel that is about 4 meters long and less than 2 meters in diameter. Our next machine, Copernicus, will be about 50 percent larger than Norman and take up 2 acres of space. In contrast, the ITER site measures over 100 acres with ITER's tokamak vacuum vessel nearly 20 meters in diameter and 11.5 meters tall."
Naturally, there is a catch. "One of the biggest challenges with hydrogen-boron is the temperature required for fusion to occur, which is on the order of a billion degrees
Support us to keep independent environmental journalism alive in India.
Keep Reading
What is Green Hydrogen? Could it change energy in South Asia?
Blue hydrogen is worst for climate: study
How Increasing space traffic threatens ozone layer?
Hydro Fuel Market: India’s current scenario and the future ahead
Natural Gas is a Misleading term, It is not Natural and clean at all
Follow Ground Report on X, Instagram and Facebook for environmental and underreported stories from the margins. Give us feedback on our email id [email protected].
Don't forget to Subscribe to our weekly newsletter, Join our community on WhatsApp, and Follow our YouTube Channel for video stories.